大数据技术培训:Zookeeper集群管理与选举
大数据技术的学习,逐渐成为很多程序员的必修课,因为趋势也是因为自己的职业生涯。在各个技术社区分享交流成为很多人学习的方式,今天很荣幸找到千锋大数据培训老师,给我们分享一些大数据基础知识,大家可以一起学习!
1.集群机器监控
这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:
集群中机器有变动的时候,牵连修改的东西比较多。
有一定的延时。
利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:
客户端在节点 x 上注册一个Watcher,那么如果 x?的子节点变化了,会通知该客户端。
创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。
例如,监控系统在 /clusterServers 节点上注册一个Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL类型的节点:/clusterServers/{hostname}. 这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。
2.Master选举
在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。
利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,终究一定只有一个客户端请求能够创建成功。利用这个特性,就能很轻易的在分布式环境中进行集群选取了。
另外,这种场景演化一下,就是动态Master选举。这就要用到?EPHEMERAL_SEQUENTIAL类型节点的特性了。
上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 ,?/currentMaster/{sessionId}-2 ,?/currentMaster/{sessionId}-3 ….. 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。
3.搜索系统
在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的Master来进行全量索引的生成,然后同步到集群中其它机器。另外,Master选举的容灾措施是,可以随时进行手动指定master,就是说应用在zk在无法获取master信息时,可以通过比如http方式,向一个地方获取master。
在Hbase中,也是使用ZooKeeper来实现动态HMaster的选举。在Hbase实现中,会在ZK上存储一些ROOT表的地址和 HMaster的地址,HRegionServer也会把自己以临时节点(Ephemeral)的方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的存活状态,同时,一旦HMaster出现问题,会重新选举出一个HMaster来运行,从而避免了 HMaster的单点问题
学习大数据开发,可以参考千锋提供的大数据学习路线,该学习路线提供完整的大数据开发知识体系,内容包含Linux&&Hadoop生态体系、大数据计算框架体系、云计算体系、机器学习&&深度学习。根据千锋提供的大数据学习路线图可以让你对学习大数据需要掌握的知识有个清晰的了解,并快速入门大数据开发。

猜你喜欢LIKE
相关推荐HOT
更多>>
无重复字符的最长子串
题目描述:给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1: 输入: "abcabcbb" 输出: 3解释: 因为无重复字符的最长子串...详情>>
2022-10-11 14:52:00
如何自定义累加器
spark提供了一个累加器用于在整个流程中额外执行一个MR任务,它可以在driver端被初始化发送给各个Task,然后在每个Task中为它添加数据,最终经...详情>>
2022-09-30 15:17:00
如何写数据
1. 客户端从zk中获取meta表位置,到对应regionServer上获取该表,或直接从缓存中读取该表。 2. 客户端从meta表中获取要写的数据存放的region和...详情>>
2022-09-26 11:24:00
spark作业的最大并行度
spark作业的最大并行度=excutor个数*每个excutor的cpu core数 但spark的当前并行度取决于task数,而task数=分区数。详情>>
2022-09-23 16:29:00
kafka的topic,partition,replica,message的理解
如果配置为2,表示除了leader节点,对于topic里的每一个partition,都会有一个额外的备份。message:实际写入Kafka中并可以被读取的消息记录。每...详情>>
2022-09-20 16:59:00大数据培训问答更多>>
新大数据适合女生学吗?
新哪家大数据分析培训班好
新大数据培训班需要多少钱?怎么挑选大数据培训班
新大数据培训班需要多少钱?大数据就业方向有哪些
新大数据培训班靠谱吗?大数据发展前景怎么样
新大数据分析培训哪里好
新大数据培训学费多少?课程内容是什么
大数据面试题库 更多>>
大数据的五个V是什么?
数据及集群管理(三)
数据及集群管理(二)
数据及集群管理(一)
大数据之hbase的优化读数据方面
大数据之hbase的优化写入数据方面
开班信息
北京校区
- 北京校区
- 大连校区
- 广州校区
- 成都校区
- 杭州校区
- 长沙校区
- 合肥校区
- 南京校区
- 上海校区
- 深圳校区
- 武汉校区
- 郑州校区
- 西安校区
- 青岛校区
- 重庆校区
- 太原校区
- 沈阳校区
- 北京校区
- 大连校区
- 广州校区
- 成都校区
- 杭州校区
- 长沙校区
- 合肥校区
- 南京校区
- 上海校区
- 深圳校区
- 武汉校区
- 郑州校区
- 西安校区
- 青岛校区
- 重庆校区
- 太原校区
- 沈阳校区
